The C. S. Department maintains a small cluster of 91 (2336 cores) machines for general computing. The machines are set up to use Slurm for batch job submission. Be aware that you will need to use your NetID and NetID password to access the login host (login.cs.duke.edu). The compute cluster machines are on a 3-4 year replacement cycle, so any machine in the cluster should be no more than four years old. You can use the program sinfo to monitor cluster usage. For more information see the Slurm documentation.
N.B. Due to the number of users using the login machines for
computationaly intensive tasks, we have put resource limits
on user sessions on the login machines. Users are limited
to a single CPU and 4GB of RAM. Please use the cluster for
cpu intensive jobs.Logging in for a terminal session
The terminal session looks like this:
macbook-pro $ ssh netid@login.cs.duke.edu
netid@login.cs.duke.edu's password:
Duo two-factor login for netid
Enter a passcode or select one of the following options:
1. Duo Push to XXX-XXX-1234
2. Phone call to XXX-XXX-1234
3. SMS passcodes to XXX-XXX-1234 (next code starts with: 1)
Passcode or option (1-3): 1
Success. Logging you in...
Last login: Wed May 20 12:21:38 2020 from 174.247.16.115
netid@login~
The rest of your session will proceed as normal. Transferring data using SCP will look just the same as logging in via ssh.
Environment modules
Modules can be loaded and unloaded dynamically and atomically, in a clean fashion. All popular shells are supported, including bash, ksh, zsh, sh, csh, tcsh, fish, cmd, as well as some scripting languages such as tcl, perl, python, ruby, cmake and r. See the environment modules page for details.
Globus
Globus is a data management service frequently used in the research community to transfer or share large scale research data. It is a non-profit service run by the University of Chicago that is available to all Duke users under a standard Globus subscription. Globus is the recommended method to transfer data to and from the Duke Compsci department. Duke Compsci provides the following Globus Collections (endpoints):
Compsci Data Transfer Node – This endpoint can support xtmp storage.
for more information, see the CS Globus page.
Singularity Containers
You can utilize singularity containers on the CS cluster.
The cluster is comprised of the following machine configurations:
GPU Resources:
GPU | Cores | Tensor Cores | VRAM | Hosts |
16 A6000s | 10752 | 336 | 48GB | compsci-cluster-fitz |
24 a5000s | 8192 | 256 | 24GB | linux[41-44] |
10 V100s | 5120 | 640 | 32GB | gpu-compute[5-7] |
26 P100s | 3584 | 12GB |
linux[41-50] gpu-compute[4-5] |
|
24 K80s | 4992 | 12GB | gpu-compute[1-3] | |
30 2080RTXTi | 4352 | 11GB |
linux[41-60] |
10x TensorEX TS2-673917-DPN Intel Xeon Gold 6226 Processor, 2.7Ghz (768GB RAM 48 cores). Each of the machines has 2 Nvidia GeForce 2080 RTX Tis.
- linux51
- linux52
- linux53
- linux54
- linux55
- linux56
- linux57
- linux58
- linux59
- linux60
10x Tensor TXR231-1000R D126 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (512GB RAM - 40 cores). Each of the machines has 2 Nvidia Tesla P100s, and 1 Nvidia GeForce 2080 RTX Tis. Linux 41-44 each have one A5000.
- linux41
- linux42
- linux43
- linux44
- linux45
- linux46
- linux47
- linux48
- linux49
- linux50
3x Quantum TXR430-0512R Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz (256GB RAM - 32 cores) with 10GB interconnects. Each of the machines has 4 Nvidia Tesla K80s.
- gpu-compute1
- gpu-compute2
- gpu-compute3
4x Quantum TXR113-1000R Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (256GB RAM - 40 cores) with 10GB interconnects. Each of the machines has Nvidia Tesla P100s or V100s.
- gpu-compute4 (4x P100s)
- gpu-compute5 (2x P100s, 2x V100s)
- gpu-compute6 (4x V100s)
- gpu-compute7 (4x V100s)
2x Dell R610 with 2x E5540 Xeon Processor, 2.53GHz 8M Cache (96GB RAM - 16 cores)
- linux29.cs.duke.edu
- linux30.cs.duke.edu
10x Dell R730 with 2 Intel Xeon E5-2640 v4 2.4GHz,25M Cache (256GB RAM - 40 cores)
- linux31.cs.duke.edu
- linux32.cs.duke.edu
- linux33.cs.duke.edu
- linux34.cs.duke.edu
- linux35.cs.duke.edu
- linux36.cs.duke.edu
- linux37.cs.duke.edu
- linux38.cs.duke.edu
- linux39.cs.duke.edu
- linux40.cs.duke.edu
10x Dell R610 with 2 E5640 Xeon Processor, 2.66GHz 12M Cache (64GB RAM - 16 cores)
- linux1.cs.duke.edu
- linux2.cs.duke.edu
- linux3.cs.duke.edu
- linux4.cs.duke.edu
- linux5.cs.duke.edu
- linux6.cs.duke.edu
- linux7.cs.duke.edu
- linux8.cs.duke.edu
- linux9.cs.duke.edu
- linux10.cs.duke.edu
10x Dell R620 with 2 Xeon(R) CPU E5-2695 v2 @ 2.40GHz 30M Cache (256GB RAM - 48 hyperthreaded cores)
- linux11.cs.duke.edu
- linux12.cs.duke.edu
- linux13.cs.duke.edu
- linux14.cs.duke.edu
- linux15.cs.duke.edu
- linux16.cs.duke.edu
- linux17.cs.duke.edu
- linux18.cs.duke.edu
- linux19.cs.duke.edu
- linux20.cs.duke.edu
8x Dell R610 with 2 E5540 Xeon Processor, 2.53GHz 8M Cache (48GB RAM - 16 cores)
- linux21.cs.duke.edu
- linux22.cs.duke.edu
- linux23.cs.duke.edu
- linux24.cs.duke.edu
- linux25.cs.duke.edu
- linux26.cs.duke.edu
- linux27.cs.duke.edu
- linux28.cs.duke.edu
20x TensorEX TS2-197278655 with 2 Intel Xeon Ice Lake Gold 5317 Processors, 3.0GHz 18MB Cache (64GB RAM - 12 cores) Each of the machines has 4 Nvidia RTX A5000s.
- compsci-cluster-fitz-01.cs.duke.edu
- compsci-cluster-fitz-02.cs.duke.edu
- compsci-cluster-fitz-03.cs.duke.edu
- compsci-cluster-fitz-04.cs.duke.edu
- compsci-cluster-fitz-06.cs.duke.edu
- compsci-cluster-fitz-07.cs.duke.edu
- compsci-cluster-fitz-08.cs.duke.edu
- compsci-cluster-fitz-09.cs.duke.edu
- compsci-cluster-fitz-10.cs.duke.edu
- compsci-cluster-fitz-11.cs.duke.edu
- compsci-cluster-fitz-12.cs.duke.edu
- compsci-cluster-fitz-13.cs.duke.edu
- compsci-cluster-fitz-14.cs.duke.edu
- compsci-cluster-fitz-15.cs.duke.edu
- compsci-cluster-fitz-16.cs.duke.edu
- compsci-cluster-fitz-17.cs.duke.edu
- compsci-cluster-fitz-18.cs.duke.edu
- compsci-cluster-fitz-19.cs.duke.edu
- compsci-cluster-fitz-20.cs.duke.edu
- compsci-cluster-fitz-21.cs.duke.edu
4x TensorEX TS2-197278655 with 2 Intel Xeon Ice Lake Gold 5317 Processors, 3.0GHz 18MB Cache (64GB RAM - 12 cores) Each of the machines has 4 Nvidia RTX A6000s.
- compsci-cluster-fitz-05.cs.duke.edu
- compsci-cluster-fitz-22.cs.duke.edu
- compsci-cluster-fitz-23.cs.duke.edu
- compsci-cluster-fitz-24.cs.duke.edu
Please be aware that compute cluster machines are not backed up. Users should copy any important data to filesystems that are backed up to avoid losing data. In addition, try to be cognizant that this is a shared resource. Please minimize the network traffic for shared resources like disk space. If you need to read and write lots of data, please copy that to local disks, compute the results, and store the results on longer term storage.