
Consider the program fragment below left. Assume that the program containing this fragment executes t1() and t2() on
separate threads running on separate cores. They run concurrently as depicted in the timeline below. Assume a
modern multicore system with a shared memory and lock() and unlock() primitives. Answer (a), (b), (c) below, noting
any additional assumptions you make.

Qualifying exam: operating systems, 1/5/2015

Part 1. Consistency

int x=0, y=0;

t1() {
 int i, j;
 i = x; /* R(x) */
 x = 1; /* W(x) */
 j = y; /* R(y) */
 y = 1; /* W(y) */
 …
}

t2() {
 int i, j;
 i = y; /* R(y) */
 y = 2; /* W(y) */
 j = x; /* R(x) */
 x = 2; /* W(x) */
 …
}

t1
W(x)=1

t2

R(x) W(y)=1 R(y)

W(y)=2 R(y) W(x)=2 R(x)

(a)  Is there any sequentially consistent execution of t1 and t2 that could yield R(y) = 0 in t1
and R(x) = 0 in t2? Why or why not? The point here is to demonstrate an understanding of
sequential consistency.

0?

(b) Annotate the timeline below to show how to use locks to ensure a sequentially consistent execution with respect to the
operations on x and y. Illustrate the resulting partial order of events by adding directed arcs between events to indicate
Lamport happens-before relationships, and annotating the events with values for logical clocks and vector clocks.

Part 1. (Continued)

t1
W(x)=1

t2

R(x) W(y)=1 R(y)

W(y)=2 R(y) W(x)=2 R(x)

(c) Annotate the timeline below to show how to use locks to ensure a serializable execution of t1 and t2 (in the sense of
atomic transactions). Illustrate the resulting partial order of events as in (b).

t1
W(x)=1

t2

R(x) W(y)=1 R(y)

W(y)=2 R(y) W(x)=2 R(x)

CPS 510 qualifying exam, 1/5/2015, page 2 of 8

semaphore mutex(0); /* init 0 */
semaphore condition(1); /* init 1 */

acquire() {
 mutex.p();
}

release() {
 mutex.v();
}

wait() {
 condition.p();
}

signal() {
 condition.v();
}

A monitor is a classic abstraction for concurrency control using the four operations on
the right. Monitors appear in modern programming languages including Java and C#,
and as linked mutexes and condition variables in Modula-2 and pthreads. The pseudo-
code on the right is a flawed implementation of monitors using semaphores. (P is down,
and V is up). This question asks you to summarize what is wrong with the code.

Write a list of four distinct correctness properties that this solution violates even when
used correctly. Outline a fix for each one. Feel free to mark the code.

Part 2. Concurrency

CPS 510 qualifying exam, 1/5/2015, page 3 of 8

Part 3. Threads and scheduling

This part asks you to write code to synchronize a standard event/request queue (a thread pool).
Any kind of pseudocode is fine as long as its meaning is clear. You may assume standard data
structures, e.g., linked lists: don’t write code for those.

Threads place event records on the queue using the put method. (E.g., put might be called by
a network connection handler.) A pool of worker threads get event records from the queue and
a call handler routine to process each event. When a handler completes, the worker calls get
again for the next event. The workers sleep if the queue is empty. Note: I am only asking you
to code up the put and get methods, and not any thread/code that calls those methods.

(a) Implement put and get using monitors (or mutex + condition variable).

event
queue

worker
loop

Worker thread do:
{ get next event;
 invoke handler;
 loop.
}
(Sleep if no events.)

put

handler

get

put (Event e)
{

get() returns Event e
{

} }

CPS 510 qualifying exam, 1/5/2015, page 4 of 8

thread

(b) Modify your answer to (a) to reduce average response time. Suppose there are three types of incoming events
with different average service demands: the handler for type A events takes one time unit to execute, type B events
take 2 units, and type C events take 3 units. You may assume each event record is tagged with exactly one type
code (A, B, or C). Your solution should be free from starvation and deadlock. Code is optional: if you can explain
your solution without writing code, that is sufficient.

Part 3. (Continued)

CPS 510 qualifying exam, 1/5/2015, page 5 of 8

Part 4. Performance

Suppose I have a service that runs on a server S and receives requests from a network. Each request on S reads a
randomly chosen piece of data from a disk attached to S, and also does some computing. On average, a request
arriving when S is idle spends T time units computing on the CPU and T time units waiting for data from the disk.

Now suppose I redeploy the service on a new server S’. S’ is the same as S, except that the CPU is 20% faster and
S’ has two disks, each containing a copy of the data.

(a) Sketch the throughput and mean response time of S and S’ as the request arrival rate increases. Sketch the
graphs, label the axes, and annotate key features of the graphs. What are the peak throughputs of S and S’ at
saturation? Note any other assumptions you need to answer the question.

Throughput Mean response time

CPS 510 qualifying exam, 1/5/2015, page 6 of 8

Part 4. (Continued)

(b) Now suppose I add memory to S’ so that it can cache half of the data stored on the disks. What impact does this
change have on the peak throughput? What impact does it have on the utilization of the disks? Again, note any
additional assumptions made in your answer.

CPS 510 qualifying exam, 1/5/2015, page 7 of 8

CPS 510 qualifying exam, 1/5/2015, page 8 of 8

Part 5. Virtualization

What is the purpose of copy-on-write (COW)? Outline a scenario in which a virtual memory system uses COW. List
a sequence of events that occurs to trigger a COW operation and to complete the operation. Outline (or sketch) the
data structures that the OS needs to recognize a triggering scenario and to complete the operation.

