Our framework contains three key components:
- Segmenter, discriminator, and the oracle

Initial Training
We initialize segmenter and discriminator with CBIS-DDSM data.

Active Learning Loop
- The segmenter predicts labels, and the discriminator predicts how good they are.
- We choose images to show to the oracle based on the scores, and receive feedback.
- We employ an automated oracle system that can approve a label as correct, or provide ground-truth labels.
- With the feedback, retrain the segmenter and discriminator.

Active learning
Intentionally choose which subset of data to label, with the idea that some labels are more informative for training. Iteratively query a user for labeling.

Segmenter:
X-ray picture of the breast

UNet: Deep-learning architecture (UNet) we use to label mass lesions. We use nnUNet, an adaptive UNet implementation.

Discriminator: Convolutional neural network (VGG11) we train that assigns a score (0 to 1) on the accuracy of labels produced by segmenter.

Oracle: Expert who approves/validates labels.

CBIS-DDSM data: Curated Breast Imaging Subset of Digital Database for Screening Mammography, used for initial training.

In-house data: 1136 images from 484 patients who received mammograms at Duke University Health Systems between 2008 and 2018.

Key Takeaway
- Active learning can help create mammogram datasets more efficiently and economically.
- Querying oracle with **best** labels led to a dataset of 824 good labels with avg 312 aided by segmenter, comparable to **random**.
- **best** produces good labels at a faster rate.
- Querying with **worst** labels led more quickly to better segmenter model performance.

Next Step: Improve discriminator accuracy

**Currently, the method with most efficient labeling reduces required expert input by 37.9%.

References