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Abstract

We devise a statistical framework for edge detection by
performing a statistical analysis of zero crossings of the
second derivative of an image. This analysis enables us
to estimate at each pixel of an image the probability that
an edge passes through the pixel. We present a statistical
analysis of the Lindeberg operators that we use to com-
pute image derivatives. We also introduce a confidence
probability that tells us how reliable the edge probability
is, given the image's noise level and the operator’s scale.
Combining the edge and confidence probabilities leads to
a probabilistic scale selection algorithm. We present the
results of experiments on natural images.

1 Introduction

A common approach to edge detection isto smooth the
image and find maxima of the gradient magnitude in the
gradient direction [9, 2, 4]. The maxima of the gradient
magnitude are either found by explicit comparison with
neighboring pixels, or equivalently, by computing the sec-
ond derivative in the direction of the gradient and looking
for zero crossings. Sinceimage noise causes zero crossings
where no edges exist, athreshold on thegradient magnitude
is often used to eliminate the spurious zero crossings.

It is difficult to set a threshold for the gradient magni-
tude in a principled way, even if the threshold is based on
ameasure of image noise [2, 19]. The gradient magnitude
can be large in regions of smooth shading where there are
no edges — often larger than it is at low-contrast edges. It
is sengitive to changes in illumination and difficult to esti-
mate accurately [8]. Asaconsequence, detecting edges by
thresholding the gradient magnitude |eads to many errors.

Here we show that a statistical analysisof zero crossings
that takes image noise into account suffices to detect and
locate edges accurately. Our analysis is based on proba-
bilisticmodel s of both sensor noise and the responses of the
operators that we use to detect edges. The agorithm that
resultsiscontrolled not with ad hoc parameters but interms
of probabilities of error. Moreover, our anadysis suggests
that we should largely dispense with the use of the gradient
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magnitude. Instead, we devise statistical teststo detect zero
crossingsthat are more correct and morereliablethan those
that use the gradient magnitude. Our statistical approach
enables us to estimate at each pixel the probability that an
edge passes through the pixd.

An edge probability can be low for two reasons. ei-
ther it is very unlikely that there is a edge, or the image
measurements used to estimate the edge probability are so
noisy that the estimate of the edge probability is not reli-
able. Distinguishing between these two cases isimportant:
inthelatter case, increasing the scal e of the operator can re-
sultinahigher edge probability. Weintroduceaconfidence
probability that is high when theimage measurements used
to estimate the edge probability have a high signal-to-noise
ratio and low when they do not. The confidence probability
also tells us when taking higher derivatives of an image to
compute the edge probabilities will not make the results
unstabl e because of noise amplification.

We use the linear derivative operators proposed by Lin-
deberg [10] to smooth and differentiate the image. As
Lindeberg shows, these operators are more accurate than
sampled Gaussian derivatives, particularly at finer scales,
and preserve scal e-space properties. To usethese operators
inour statistical framework, we provide an anaysisof their
statistical properties.

Smoothing introduces the problem known as scale se-
lection: choosing the scale of the smoothing operator. Re-
cently Lindeberg [11] and Elder [5] have addressed this
problem in edge detection. Edges in natural images range
from sharp to diffuse, a property Elder calsthe edge'sblur
scale. Elder argues that the optimal operator scale depends
on blur scale, edge contrast, and sensor noise. He suggests
increasing the scal e of the derivative operatorsuntil the de-
tected edges arereliable in a statistical sense. Hecallsthis
the minimum reliable scale.

The contribution of our work is the statistical frame-
work for the edge and confidence probabilities. Like Elder,
when confidence is low, we increase the scae of the op-
erator until the confidence is high enough for us to accept
the edge probability as reliable. Our framework is based



on a different and more thorough statistical anaysis than
Elder’s.

Thealgorithmwe proposehere producestwo probability
maps, edge and confidence probabilitiesfor every pixel in
the image. Edges are not produced directly, athough we
show how to usetheinformation weprovideto detect edges.
Our results provide the basis for improved edge detection,
as well as scale salection, edge linking, and other low-
level vision agorithms that depend on accurate statistical
information about the presence of edges.

The outline of the paper is as follows. Section 2 re-
views previous work. Section 3 develops the statistical
framework for our approach in the one-dimensional case.
Section 4 extends this framework to the two-dimensiona
case and presents experimental results on natura images.
Section 5 presents an algorithm for detecting edges using
edge probability maps. Section 6 applies our framework to
the problem of scale selection. Section 7 summarizes our
approach and results and discusses future work.

2 PreviousWork

Haralick [9] was the first to use zero crossings of the
second derivative in the direction of the gradient to detect
edges. He used a statistical analysis to threshold the gra-
dient magnitude based on an estimate of image noise, and
proposed confidence intervals for the gradient direction.
Hedid not, however, suggest a statistical test based on zero
crossings themselves. Many other authors have proposed
approaches to thresholding based on the gradient magni-
tude (e.g., Voorhees and Poggio [19]). For arecent review
of thisliterature, see Rosin [18].

As mentioned above, both Lindeberg and Elder have
proposed solutionsto the problem of scale selection. Lin-
deberg’s approach does not use any statistical notions[11].
Instead, he detects edges by threshol ding ameasure of edge
strength integrated along a curve of edge points. Our main
interest in hiswork is the operators he uses for smoothing
and differentiation. We discuss thisfurther in Section 3.2.

Elder’ sstatistical approach to scale selection[5] inspired
many of our ideas. The edges he detects must meet two
probabilistic criteria: the gradient magnitude must be sig-
nificantly grester than zero, and there must a significant
zero crossing in the second derivative in the direction of
the gradient. He triesto find three minimum reliable scales
for each pixel, one for the gradient magnitude and two for
the second derivative (corresponding to its valuesto either
side of a pixel inthe gradient direction). Hefinds thethree
scales when the two probabilistic criteriaare met, and only
then is an edge declared to pass through the pixel.

Our analysis differsfrom Elder’sin the following ways.
First, we do not test for the gradient magnitude for the
reasons mentioned earlier. Instead, our confidence proba-
bility uses a combination of second and third derivatives,
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Figure 1: The zero-crossing condition: s, /szzs| < Ax.

as explained in Section 3.5. Second, we perform a more
accurate analysis of the statistical properties of the second
derivative. Thisenables usto estimate the probability of an
edge where Elder makes ahard decision about the existence
of an edge. Third, hisnotion of minimum reliable scal e ap-
plies to the scales of the operators used for the first and
two second derivatives used in his test for an edge. Thus
an edge may have three different minimum reliable scales
associated with it. In our analysis, the minimum reliable
scale is the single scale of smoothing used to compute all
the derivatives. Thus we associate the minimum reliable
scale with the edge itself, not with the different derivatives
involved in its detection.

3 Theone-dimensional case

Here we develop our theory of edge probabilities for
one-dimensional signals. We show how to compute the
probability that an edge passes through a pixel, and a confi-
dence probability in the measurements underlying the edge
probability.

3.1 A mode for edgesbased on zero crossings

We model the sensor noisein the signal as a stationary,
additive, zero-mean white-noise process with standard de-
viationo,,. Theobserved signal isthusr(z) = s(z)+n(z),
where s(z) isthe“true” signal, and n(x) isthenoise. Usu-
ally we will drop the positional parameter « and simply
refer tor, s and n.

We define an edge as a location where s, the second
derivative of the signal, has a zero crossing. To decide
whether the pixel centered at » has a zero crossing in the
second derivative, we use the condition

|$za/Seex| < Ax (1)

where Az ishalf the pixel width. Condition 1 istrue when
the linear approximation to the second derivative at «, the
linethrough s, with Slope s, Crosses the z-axiswithin
Az of z (i.e, within the pixel), as depicted in Fig. 1. To
avoid “phantom edges’ (see Clark [3]), we also requirethat
Szsere < 0. Whileit is commonly thought impractical to
use the third derivative of a noisy signal because of noise
amplification, we use the confidence probability that we
proposein Section 3.5 to determine when the val ue of third
derivativeistoo low to bereliable.



We note that while the standard deviation of the noise
o, 1San input parameter to all of the algorithms devel oped
below, it isnot trivial to estimate[2, 19].

3.2 Signal derivatives

To use Condition 1 to detect zero crossings, we compute
the second and third derivatives of the signal. We use the
Lindeberg smoothing and derivative operators [10], which
have scal e-space propertiesthat hold in thediscretedomain,
just as continuousGaussian derivativesdo in the continuous
domain. Like derivatives of Gaussians in the continuous
case, they introduce no new zero crossings of the second
derivative as the scale of smoothing increases. Sampled
Gaussian derivatives do not have this property.

Another important advantage of the Lindeberg opera-
tors is that smoothing and differentiation commute. This
is important computationally, since it makes it possible to
smooth asignal once, whichisexpensive, and then cheaply
differentiate multiple times by applying derivative opera-
torswith small support to the smoothed signal. Thisisnot
true of sampled Gaussian derivatives. Moreover, Linde-
berg shows that at small scales, sampled Gaussian second
derivatives sometimes give the wrong sign, which makes
them particularly unsuitablefor detecting zero crossings.

Lindeberg's smoothing operator has the form

T(x;az) = e_UQIx(Uz) ,

where o is the scale parameter, and I, is the modified
Bessel function of integer order . To simplify the nota-
tion, we define 7,,(x) = 7 (z;ac?). Because smoothing
and differentiation commute, the various derivatives can be
computed after smoothing, which leads to the following
linear operators for smoothing and differentiation[10]:

(D)) = 3 (T +1) = Tife — 1)),

1

(PoaeTi)(z) = 5 ((PeeTi)(@ +1) = (PooT1)(x — 1))

Since we assume the noise is Gaussian, the vector of
filtered noise derivatives n is zero-mean Gaussian. The
covariance matrix K (n) completely specifies their distri-
bution, and iscomputed by standard techniquesfrom statis-
tical signal processing; see Papoulis[15] for details. Since
it is symmetric, we show only itslower half:

Ng B
n= | ng , Kmy=o2| 0 D ,

where

D = 2Ty(2) — 8T5(1) 4 6T5(0) ,
E = —1T5(4) 4 275(3) — 2T5(2) — 2T5(1) +37%(0) ,
F o= —115(3) + 15(2) +115(1) — 15(0) .

3.3 Thepraobability of a zero crossing

Now we derive the probability that thereisazero cross-
ingwithintheinterval (z — Az, z+ Az). Weuse Condition
1 to get the probability of azero crossing (zc) in the second
derivativein apixel centered at x:

P{ch rxxarxxx} =P {|5xx/5xxx| < Arx | rxxarxxx} .

The definition » = s + n implies that the conditional
distribution of s, given ry, is N (ree, 02,) (i.€, normal
with mean ., and variance ¢2.). Similarly, the distribu-
tion of 5,0 QIVEN 740y IS N (rpge, 02,,). Here o2, and
o2, aredlements (2, 2) and (3, 3) of the covariance matrix
K (n) derived in the previous section.

Fieller [6, 16] derived the cumul ative distribution func-
tion (c.d.f) of the quotient of two normal random variables,

which we use to obtain

P{|see/Svee] < Az | Toz, Tozs ) = ©)
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with bivariate normal distributions and is defined for the
standardized bivariate normal distribution ¢(x, y; p) as

L(h,k,p)z/h /k Y(z,y;p) dy de .

L(h, k, p) has no closed-form solution. However, good
approximations exist [16], and precomputed tables can be
used for efficiency.
3.4 Theprobability of an edge

Aswementionedin Section 3.1, to avoid phantom edges,
we require that s, s,., < 0. This implies the following
relation between zero-crossing and edge probabilities:

P{edge} = P{zc| sp5000 < 0} .

We separate the edge probability into two cases depending
onthesignof s,:

P{edge} = P{edge| s, > 0}P{s, >0} (5)
+ P{edge| s, < 0}P{s, < 0},



where P{s, < 0} and P{s, > 0} are easy to compute
because s, has a known Gaussian distribution, and

P{edge|s, >0} =
P{edge| s, <0} =

P{ch Sp > 0, 8500 <0} (6)
P{ch Sy < 0, 8ppp >0} .

Unfortunately, because s, and s, are not independent,
itisdifficult to obtain simpleexpressionsfor the right-hand
sides of Eq. 6. However, assuming independence grestly
simplifiestheanalysis, and our experimental results suggest
that thisisagood approximation. Moreover, aswe will see
in Section 4.2, thissimplificationisunnecessary in thetwo-
dimensional case, the main goa of our anaysis.

When s, and s, are independent, the first term on the
r.h.s. of Eg. 4 corresponds to the case s;., < 0 and the
second to the case s, > 0 (see Fieller [6]). Therefore,
by defining G* (¢) and GG~ (¢) accordingly, we can write

P{edge| s, > 0} = G+ ("ﬂm) —G* (—"ﬂm)

Ul‘l‘ Ul‘l‘

and similarly for P{edge | s, < 0} using G~ (t).

Now we have defined all the components of ther.h.s. of
Eqg. 5, and we can compute the edge probability.

At very fine scales, the discrete approximation to the
third derivative defined by Eq. 2 is inaccurate, which &f-
fects the edge probabilities. Instead we use backward and
forward differences of the second derivative. The edge
probabilities are then computed separately for the back-
ward and forward differences and combined.

We can localize edgesto subpixel precision by adjusting
Az inEq. 7tointegratethe probability over aregion smaller
than a pixel. The region can be as small as desired and
positioned anywhere between two adjacent pixels.

3.5 The confidence probability

Edge probabilities alone can be mideading. For ex-
ample, the edge probability at a pixel can be low because
there is indeed no edge near the pixel, or because noiseis
masking thetruesignal and it is difficult to determineif an
edge exists. We seek some measure of confidence that the
values of the second and third derivatives used to compute
the edge probabilitiesare not due to noise aone.

Thetest that we use isexplained by Muirhead [14], and
we follow his discussion here. As we showed in Section
3.3, the distribution of X = [ s,y spew | iSN (1, %),
where ¢ denotes matrix transpose, and

Uix 0
] s 4]

The p.df. of the quadratic form (X — p)*==1(X — )
is chi-squared with two degrees of freedom, denoted 2.
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To test the null hypothesis Hy, : 1« = 0 against alternatives
u# 0, atest of sizea istoreect Hy if

Q=X'T"1X > cn(a),

where ¢, () is the upper 100a% point of the y3 distri-
bution. When H, is not true, @ has a non-central 2
distributionwith noncentrality parameter J, denoted x3(4),
where§ = 1t~ 1y, The power of thistest is

B(8) = P{x3(0) > em(a)}.

To compute the confidence probability, we perform this
test at every pixed of theimage. Thesize « isdefined asthe
probability of incorrectly deciding ¢« # 0. Asisstandardin
such testing, we set « to be very low, since thisisthe error
we most want toavoid. Rather than making ahard decision
at every pixel based on whether @ > ¢, (a), we use as
our confidence probability 3, the power of the test. The
power is defined as the probability of correctly deciding
that 1 # 0 when @ > ¢ («).

4 Thetwo-dimensional case

To extend our results on edge probabilities to the two-
dimensional case, we now look for zero crossings of the
second derivative of the signal in the direction of its gra-
dient. This requires that we know the distributions of the
first, second, and third directiona derivatives of the noise,
and the distribution of the gradient direction. Computing
the probability of an edge in a given direction issimilar to
the one-dimensional case, once we have the distributions
of the directiona derivatives. But the gradient directionis
noisy as well. Therefore we use conditional probabilities
and integrate the product of the probability of an edgein a
given direction and the probability that that directionisthe
gradient.

Let s(z,y), r(x,y), and n(z, y) be the true image, the
observed image and the noise respectively. As before,
we drop the positional parameters when it is clear that
we are referring to values at a single pixel. Let r denote
the vector of first, second and third derivatives of » with
respect to 2 and y. From thisvector the gradient direction
and directional derivatives can be estimated. Let ¢, =
tan~!(s, /s, ) bethe gradient direction of the signal. The
probability of an edge given r can be written

27
P{edge|r} = /P{edge| 0 =0, v}P{0=10,|r}dd,.
0

(8)

The sectionsthat follow provide the details of the right-
hand size of this equation. We will use the following ad-
ditional notation. Let g = (s2 + s7)'/? be the gradient
magnitude of the signal, and let g = (r2 + r2)!/? and



6, = tan~'(r,/r.) be the gradient magnitude and direc-
tion of the observations. We denote the ith derivatives of »
indirection @ by rf, and similarly for s and n.

4.1 Imagederivatives

Herewe present the distributionsof thefirst, second and
third derivatives of the noisein the z and y directions, and
the distribution of the gradient direction.

As in the one-dimensional case, the derivatives are
jointly Gaussian with zero means, and the covariance ma-
trix completely specifies their distribution. We again use
the discrete Lindeberg operators [10]. Using autocorrela
tion functions and power spectral densities as before, we
find the covariance matrix. Sinceit is symmetric, we show
only itslower half:

AB
0 AB
0 0 AD
0 0 0 BB
Km)=o¢2| 0 0 CC 0 AD
AF 0 0 0 0 AFE
0O BC 0 0 0 0 BD
BC 0 0 0 0 CF 0 BD
| 0 AF 0 0 0 0 CF 0 AF |
where .
n = [ Ny Ny Naex Ney Nyy Neze Neey Neyy Nyyy ] 1

A = T5(0), C = 2T5(1) — 275(0) and B, D, E, and
I areasin Section 3.2,

To compute directiona derivatives, we use separable
two-dimensional kernels based on derivatives of the Linde-
berg one-dimensiona kernels. The directional derivative
kernels can be steered to any direction by taking an appro-
priatelinear combination of basiskernd s, thederivativesin
thex and y directions. For detailson steering, see Freeman
and Adelson [7]. Using linearity, we can steer the results
of convolving theimage with the basis kerndls.

The digtribution of the gradient direction has been de-
rived by Lyversand Mitchell [12], Gregson[8], and Ramesh
and Haralick [17]. Given the observations r,, and 7y, s,
and s, have Gaussian distributions with means ., and r,
and standard deviation oy = ¢, = o,. Because of the
structureof K (n), n, and n, areindependent, and thus s,
givenr, and s, givenr, areaswell.

Thedistributionfor ¢, given ég and g istheoffset normal
distribution[13],

(e | q,0 )= @+(zcosé )¢ (zsindy) ® (2 cosdy)

g Vg \/ﬂ g g 9(9)’

where z = j/o1, 8, = 0, — b4, 6(2) isthe p.df. of the
standard univariate normal distribution, and ®(z) its c.d.f.
Note the distributionis over ¢, but parameterized by z.
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Figure 2: Pixel width as afunction of direction.

4.2 The probability of an edge given 6,

In the one-dimensional case, the probability of an edge
is given by Eq. 5. In the two-dimensiona case, given
that the edge is in the gradient direction 4., we replace
the one-dimensional derivatives implicit in that equation
by directional derivatives steered to the 4, direction. We
need also to account for the fact that the “width” of atwo-
dimensional pixel varieswith d,, as depicted in Fig. 2. We
now writethe half-width of apixel as

Azx

max (| cos by, |sinfby|)

Az(ly) =

(10)

In one dimension, we computed the edge probability in
two parts depending on the sign of s,.. Intwo dimensions,
because 9, isthe gradient direction, we need only consider
thes, > 0 casebecause P{s, > 0} = 1. Modifying Eq. 7
accordingly, we obtain

Pledge| ry7, 5", 0,} = (11)
+(73 ot (o3
G (0_2 Ax(ﬁg)) G ( p Ax(ﬁg)) ,

where o» and o3 are the standard deviations of the second
and third noise derivativesindirection d,. In practice, they
depend on ¢, so little that we approximate them by o
and o, respectively. Here, rgg and rgg are part of the
definitionof G, just as ., and v, Werein Section 3.3.
4.3 The probability of an edge

Now we can fill in the details of the the two probabil-
ities in the integrand of the right-hand side of Eqg. 8, the
probability of an edge given the observations. The first
probability, P{edge| § = 6,,r}, isgiven by Eq. 11. The
second probability, P{6 = 4, |r}, is the offset normal
distribution as given by Eq. 9.

We have not been able to evaluate the integral in Eq. 8
in closed form. Indeed, it follows from the discussion of
Eq. 3 in Section 3.3 that Eqg. 11 itself involves integrals
that have no closed-form solution. We evaluate theintegral
numerically using precomputed tablesfor the offset normal
distribution.

Integrating Eqg. 11 over 6 corresponds to evaluating the
edge probability inthe é direction and weighting that prob-
ability by the probability that ¢ = 6,, which we compute



Figure 3: (a) The flower image; (b) detail; () edge probability map: dark values indicate high probabilities; (d) detail.

with the offset normal distribution. The observed gradient
magnitude ¢ influences the edge probabilities because the
offset normal distribution depends on g through z = g/
(see Eqg. 9). When z islow, the offset normal approaches
the uniform distribution, although its maximum is till at
the observed gradient direction; when z is high, the offset
normal is very concentrated near the observed gradient di-
rection. Because o1 isconstant withinanimage, thislowers
edge probabilitieswhen g issmall but not (or only slightly)
whenitislarge. The overall effect isto reduce background
noise. We have observed, however, that evaluating Eg. 11
in the observed gradient direction is a reasonabl e approxi-

mation to Eq. 8.
4.4 The confidence probability

The confidence probability in two dimensions is com-
puted the same way asin one dimension, except now there
are seven degrees of freedom in the chi-squared distribu-
tion: the second derivative has three components and the
third derivativefour. The covariance matrix of these derive-
tivesisasubmatrix of K (n) in Section 4.1.
45 Examples

We have tested the computation of probability maps on
avariety of synthetic and natural images. Fig. 3(a) shows
an image of a flower in front of a building, and Fig. 3(c)
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Figure 4: (@) Detail of window in flower image; (b) in
flower probability map; (c) edge detection.

its probability map, using o = 1. Fig. 3(b) magnifies a
small region of the image, and Fig. 3(d) the corresponding
region of the edge probability map. Notethat even though
the two edges of the stem on theright side of Fig. 3(b) are
only separated by one pixel and have low contrast in the
original image, the high-probability edgesintheprobability
map are clearly visible. This is a consequence of both
the accuracy of the Lindeberg operators and the ability of
the zero-crossing probabilitiesto localize edges. Also in
Fig. 3(d), the vertical edges of the brick on the left side of
the map are blurred because the scale of smoothing is too
fine to localize these edges, which have a relatively large
blur scale, and therefore alow confidence probability.

5 EdgeDetection

Fig. 4illustratesthe computation of edgesfrom the edge
probability map. Fig. 4(a) shows adetail on the building's
window from the image in Fig. 3. Fig. 4(b) shows the
edge probability map. The edges are nearly horizontal,
transitioning from onescan linetothe next every few pixels.
Notethat the probabilitiesinthetransitional areas are | ower
than when the edge runsalong a scan line. Thisis because
an edge in a transitiona region is close to the boundary
between two pixels, and its probability is split between
them. It isinteresting to note that this results in a natural
anti-aliasing in the computer graphics sense.

Detecting edges by thresholding the edge probabili-
ties directly will leave gaps where an edge passes near
the boundary between two pixels. The following scheme
avoids this problem. When an edge passes between two
pixels, the pixels will lie approximately along the line in
the gradient direction at the pixels. We visit every pixel
and check that its probability is greater than those of its
neighbors one pixel away in the gradient direction (and its
opposite). If so, we sum that pixel’s probability with the
larger of its two neighbors. We can do this because we
defined Az in Eq. 10 carefully to cover exactly one pixd.
When an edge passes through the center of the pixel, the
contribution of itslarger neighbor will usually benegligible.
When an edge passes between two pixels, the contribution
of its larger neighbor will be significant. Fig. 4(c) shows
the result of using this procedure on the probability map in

Fig. 4(b).

6 Scale Sdlection

Once we have computed the edge and confidence proba-
bilitiesat different scales, we sel ect the appropriate scalefor
each pixel by using Elder’s observation that the best scale
istheminimumreliable scale [5]. We choosethe minimum
reliable scale by thresholding the pixel’s confidence prob-
ability at some high value and choosing the minimal scale
that exceeds that threshold. Once the minimum reiable
scale is found, the edge probability of that pixel is copied
to an image that storesthe final result.

An example for the scale selection can be seen inFig. 5,
which shows an image of a mannequin and its shadow,
and edge and confidence probability maps at three scales.
Elder used this image to illustrate his approach to scale
selection [5]. The image contains edges at a variety of
scales, from sharp edges on the mannequin itself to edges
that are increasingly diffuse a ong the shadow from itsfeet
to head.

Fig. 5(c) shows edge and confidence probability maps
computed with three different scales of smoothing, using
o, = 2. Inthefiner-sca e edge probability maps, the details
of the mannequin itself are captured precisaly, but as the
edges become more diffuse on the shadow, the probabilities
become lower, reaching background levels onthe shadow’s
thighs. As scale increases, the diffuse edges now have
higher probabilities, but the sharp onesare smeared out, and
some details are lost entirely. The confidence maps were
computed with size « at the 5o level (where the o hereis
the standard deviation of thenormal distribution). Fig. 5(b)
isthe result of applying the edge detection agorithm from
the previous section to the edge probability map after scale
selection, i.e, a map that combines the results from scales
1,2, and 4. We used a threshold of 0.9 on the resulting
probability map to get the edges.

7 Conclusonsand futurework

In this paper, we have analyzed the behavior of zero
crossings of the second derivative from a statistical point of
view. We have shown how to compute the probability that
an edge passes through a pixel, and a probability that the
measurements underlying the edge probability are reliable.
We used the Lindeberg operators for their accuracy and
scale-space properties, and analyzed their statistica prop-
erties. We argued that testing for edges with the gradient
magnitude was prone to errors, and showed that the proper
role for the gradient magnitude is through the offset nor-
mal distribution, which in our approach assigns different
weightsto the probability of an edgein different directions.
Our results on natural images demonstrate the promise of
this approach.
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Figure 5: (a) The shadow image; (b) detected edges after scale selection; (c) edge (left) and confidence (right) probability

maps for scaleso = 1,2, 4.

We are currently working on computing edge proba-
bilities to subpixel accuracy, applying our techniques to
detecting other features like ridges and junctions, and us-
ing the probabilisticinformationwe computein linking and
grouping edges and segmenting curves.
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