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Abstract
We devise a statistical framework for edge detection by

performing a statistical analysis of zero crossings of the
second derivative of an image. This analysis enables us
to estimate at each pixel of an image the probability that
an edge passes through the pixel. We present a statistical
analysis of the Lindeberg operators that we use to com-
pute image derivatives. We also introduce a confidence
probability that tells us how reliable the edge probability
is, given the image’s noise level and the operator’s scale.
Combining the edge and confidence probabilities leads to
a probabilistic scale selection algorithm. We present the
results of experiments on natural images.

1 Introduction
A common approach to edge detection is to smooth the

image and find maxima of the gradient magnitude in the
gradient direction [9, 2, 4]. The maxima of the gradient
magnitude are either found by explicit comparison with
neighboring pixels, or equivalently, by computing the sec-
ond derivative in the direction of the gradient and looking
for zero crossings. Since image noise causes zero crossings
where no edges exist, a threshold on the gradient magnitude
is often used to eliminate the spurious zero crossings.

It is difficult to set a threshold for the gradient magni-
tude in a principled way, even if the threshold is based on
a measure of image noise [2, 19]. The gradient magnitude
can be large in regions of smooth shading where there are
no edges – often larger than it is at low-contrast edges. It
is sensitive to changes in illumination and difficult to esti-
mate accurately [8]. As a consequence, detecting edges by
thresholding the gradient magnitude leads to many errors.

Here we show that a statistical analysis of zero crossings
that takes image noise into account suffices to detect and
locate edges accurately. Our analysis is based on proba-
bilistic models of both sensor noise and the responses of the
operators that we use to detect edges. The algorithm that
results is controlled not with ad hoc parameters but in terms
of probabilities of error. Moreover, our analysis suggests
that we should largely dispense with the use of the gradient

magnitude. Instead, we devise statistical tests to detect zero
crossings that are more correct and more reliable than those
that use the gradient magnitude. Our statistical approach
enables us to estimate at each pixel the probability that an
edge passes through the pixel.

An edge probability can be low for two reasons: ei-
ther it is very unlikely that there is a edge, or the image
measurements used to estimate the edge probability are so
noisy that the estimate of the edge probability is not reli-
able. Distinguishing between these two cases is important:
in the latter case, increasing the scale of the operator can re-
sult in a higher edge probability. We introduce a confidence
probability that is high when the image measurements used
to estimate the edge probability have a high signal-to-noise
ratio and low when they do not. The confidence probability
also tells us when taking higher derivatives of an image to
compute the edge probabilities will not make the results
unstable because of noise amplification.

We use the linear derivative operators proposed by Lin-
deberg [10] to smooth and differentiate the image. As
Lindeberg shows, these operators are more accurate than
sampled Gaussian derivatives, particularly at finer scales,
and preserve scale-space properties. To use these operators
in our statistical framework, we provide an analysis of their
statistical properties.

Smoothing introduces the problem known as scale se-
lection: choosing the scale of the smoothing operator. Re-
cently Lindeberg [11] and Elder [5] have addressed this
problem in edge detection. Edges in natural images range
from sharp to diffuse, a property Elder calls the edge’s blur
scale. Elder argues that the optimal operator scale depends
on blur scale, edge contrast, and sensor noise. He suggests
increasing the scale of the derivative operators until the de-
tected edges are reliable in a statistical sense. He calls this
the minimum reliable scale.

The contribution of our work is the statistical frame-
work for the edge and confidence probabilities. Like Elder,
when confidence is low, we increase the scale of the op-
erator until the confidence is high enough for us to accept
the edge probability as reliable. Our framework is based



on a different and more thorough statistical analysis than
Elder’s.

The algorithm we propose here produces two probability
maps, edge and confidence probabilities for every pixel in
the image. Edges are not produced directly, although we
show how to use the information we provide to detect edges.
Our results provide the basis for improved edge detection,
as well as scale selection, edge linking, and other low-
level vision algorithms that depend on accurate statistical
information about the presence of edges.

The outline of the paper is as follows. Section 2 re-
views previous work. Section 3 develops the statistical
framework for our approach in the one-dimensional case.
Section 4 extends this framework to the two-dimensional
case and presents experimental results on natural images.
Section 5 presents an algorithm for detecting edges using
edge probability maps. Section 6 applies our framework to
the problem of scale selection. Section 7 summarizes our
approach and results and discusses future work.

2 Previous Work
Haralick [9] was the first to use zero crossings of the

second derivative in the direction of the gradient to detect
edges. He used a statistical analysis to threshold the gra-
dient magnitude based on an estimate of image noise, and
proposed confidence intervals for the gradient direction.
He did not, however, suggest a statistical test based on zero
crossings themselves. Many other authors have proposed
approaches to thresholding based on the gradient magni-
tude (e.g., Voorhees and Poggio [19]). For a recent review
of this literature, see Rosin [18].

As mentioned above, both Lindeberg and Elder have
proposed solutions to the problem of scale selection. Lin-
deberg’s approach does not use any statistical notions [11].
Instead, he detects edges by thresholding a measure of edge
strength integrated along a curve of edge points. Our main
interest in his work is the operators he uses for smoothing
and differentiation. We discuss this further in Section 3.2.

Elder’s statistical approach to scale selection [5] inspired
many of our ideas. The edges he detects must meet two
probabilistic criteria: the gradient magnitude must be sig-
nificantly greater than zero, and there must a significant
zero crossing in the second derivative in the direction of
the gradient. He tries to find three minimum reliable scales
for each pixel, one for the gradient magnitude and two for
the second derivative (corresponding to its values to either
side of a pixel in the gradient direction). He finds the three
scales when the two probabilistic criteria are met, and only
then is an edge declared to pass through the pixel.

Our analysis differs from Elder’s in the following ways.
First, we do not test for the gradient magnitude for the
reasons mentioned earlier. Instead, our confidence proba-
bility uses a combination of second and third derivatives,
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Figure 1: The zero-crossing condition: jsxx=sxxxj < �x.

as explained in Section 3.5. Second, we perform a more
accurate analysis of the statistical properties of the second
derivative. This enables us to estimate the probability of an
edge where Elder makes a hard decision about the existence
of an edge. Third, his notion of minimum reliable scale ap-
plies to the scales of the operators used for the first and
two second derivatives used in his test for an edge. Thus
an edge may have three different minimum reliable scales
associated with it. In our analysis, the minimum reliable
scale is the single scale of smoothing used to compute all
the derivatives. Thus we associate the minimum reliable
scale with the edge itself, not with the different derivatives
involved in its detection.

3 The one-dimensional case
Here we develop our theory of edge probabilities for

one-dimensional signals. We show how to compute the
probability that an edge passes through a pixel, and a confi-
dence probability in the measurements underlying the edge
probability.
3.1 A model for edges based on zero crossings

We model the sensor noise in the signal as a stationary,
additive, zero-mean white-noise process with standard de-
viation�n. The observed signal is thus r(x) = s(x)+n(x),
where s(x) is the “true” signal, and n(x) is the noise. Usu-
ally we will drop the positional parameter x and simply
refer to r, s and n.

We define an edge as a location where sxx, the second
derivative of the signal, has a zero crossing. To decide
whether the pixel centered at x has a zero crossing in the
second derivative, we use the condition

jsxx=sxxxj < �x ; (1)

where �x is half the pixel width. Condition 1 is true when
the linear approximation to the second derivative at x, the
line through sxx with slope sxxx, crosses the x-axis within
�x of x (i.e., within the pixel), as depicted in Fig. 1. To
avoid “phantom edges” (see Clark [3]), we also require that
sxsxxx < 0. While it is commonly thought impractical to
use the third derivative of a noisy signal because of noise
amplification, we use the confidence probability that we
propose in Section 3.5 to determine when the value of third
derivative is too low to be reliable.



We note that while the standard deviation of the noise
�n is an input parameter to all of the algorithms developed
below, it is not trivial to estimate [2, 19].
3.2 Signal derivatives

To use Condition1 to detect zero crossings, we compute
the second and third derivatives of the signal. We use the
Lindeberg smoothing and derivative operators [10], which
have scale-space properties that hold in the discrete domain,
just as continuousGaussian derivatives do in the continuous
domain. Like derivatives of Gaussians in the continuous
case, they introduce no new zero crossings of the second
derivative as the scale of smoothing increases. Sampled
Gaussian derivatives do not have this property.

Another important advantage of the Lindeberg opera-
tors is that smoothing and differentiation commute. This
is important computationally, since it makes it possible to
smooth a signal once, which is expensive, and then cheaply
differentiate multiple times by applying derivative opera-
tors with small support to the smoothed signal. This is not
true of sampled Gaussian derivatives. Moreover, Linde-
berg shows that at small scales, sampled Gaussian second
derivatives sometimes give the wrong sign, which makes
them particularly unsuitable for detecting zero crossings.

Lindeberg’s smoothing operator has the form

T (x;�2) = e��
2

Ix(�
2) ;

where � is the scale parameter, and Ix is the modified
Bessel function of integer order x. To simplify the nota-
tion, we define Ta(x) � T (x; a�2). Because smoothing
and differentiation commute, the various derivatives can be
computed after smoothing, which leads to the following
linear operators for smoothing and differentiation [10]:

(DxT1)(x) =
1

2
(T1(x+ 1)� T1(x� 1)) ;

(DxxT1)(x) = T1(x+ 1)� 2T1(x) + T1(x� 1); (2)

(DxxxT1)(x) =
1

2
((DxxT1)(x + 1)� (DxxT1)(x� 1)) :

Since we assume the noise is Gaussian, the vector of
filtered noise derivatives n is zero-mean Gaussian. The
covariance matrix K(n) completely specifies their distri-
bution, and is computed by standard techniques from statis-
tical signal processing; see Papoulis [15] for details. Since
it is symmetric, we show only its lower half:

n =

2
4 nx

nxx
nxxx

3
5 ; K(n) = �2n

2
4 B

0 D
F 0 E

3
5 ;

where

B = 1

2
T2(0)� 1

2
T2(2) ;

D = 2T2(2) � 8T2(1) + 6T2(0) ;

E = � 1

2
T2(4) + 2T2(3) � 2T2(2)� 2T2(1) + 5

2
T2(0) ;

F = � 1

2
T2(3) + T2(2) + 1

2
T2(1)� T2(0) :

3.3 The probability of a zero crossing
Now we derive the probability that there is a zero cross-

ing within the interval (x��x; x+�x). We use Condition
1 to get the probability of a zero crossing (zc) in the second
derivative in a pixel centered at x:

Pfzc
>>>>rxx; rxxxg = P

�jsxx=sxxxj < �x
>>>>rxx; rxxx	 :

The definition r = s + n implies that the conditional
distribution of sxx given rxx is N (rxx; �

2
xx) (i.e., normal

with mean rxx and variance �2xx). Similarly, the distribu-
tion of sxxx given rxxx is N (rxxx; �

2
xxx). Here �2xx and

�2xxx are elements (2; 2) and (3; 3) of the covariance matrix
K(n) derived in the previous section.

Fieller [6, 16] derived the cumulative distribution func-
tion (c.d.f) of the quotient of two normal random variables,
which we use to obtain

P
�jsxx=sxxxj < �x

>>>>rxx; rxxx	 = (3)

G

�
�xxx
�xx

�x

�
� G

�
��xxx
�xx

�x

�
;

where

G(t) = L

�
a� btp
1 + t2

; �b; tp
1 + t2

�
(4)

+ L

��a+ btp
1 + t2

; b;
tp

1 + t2

�
;

a = rxx=�xx, and b = rxxx=�xxx. L(�; �; �) is often used
with bivariate normal distributions and is defined for the
standardized bivariate normal distribution  (x; y; �) as

L(h; k; �) =

Z
1

h

Z
1

k

 (x; y; �) dy dx :

L(h; k; �) has no closed-form solution. However, good
approximations exist [16], and precomputed tables can be
used for efficiency.
3.4 The probability of an edge

As we mentioned in Section 3.1, to avoid phantom edges,
we require that sxsxxx < 0. This implies the following
relation between zero-crossing and edge probabilities:

Pfedgeg = Pfzc
>>>>sxsxxx < 0g :

We separate the edge probability into two cases depending
on the sign of sx:

Pfedgeg = Pfedge
>>>>sx > 0gPfsx > 0g (5)

+ Pfedge
>>>>sx < 0gPfsx < 0g ;



where Pfsx < 0g and Pfsx > 0g are easy to compute
because sx has a known Gaussian distribution, and

Pfedge
>>>>sx > 0g = Pfzc

>>>>sx > 0; sxxx < 0g (6)

Pfedge
>>>>sx < 0g = Pfzc

>>>>sx < 0; sxxx > 0g :

Unfortunately, because sx and sxxx are not independent,
it is difficult to obtain simple expressions for the right-hand
sides of Eq. 6. However, assuming independence greatly
simplifies the analysis, and our experimental results suggest
that this is a good approximation. Moreover, as we will see
in Section 4.2, this simplification is unnecessary in the two-
dimensional case, the main goal of our analysis.

When sx and sxxx are independent, the first term on the
r.h.s. of Eq. 4 corresponds to the case sxxx < 0 and the
second to the case sxxx > 0 (see Fieller [6]). Therefore,
by definingG+(t) and G�(t) accordingly, we can write

Pfedge
>>>>sx > 0g = G+

�
�xxx
�xx

�x

�
�G+

�
��xxx
�xx

�x

�
;

(7)
and similarly for Pfedge

>>>>sx < 0g usingG�(t).
Now we have defined all the components of the r.h.s. of

Eq. 5, and we can compute the edge probability.
At very fine scales, the discrete approximation to the

third derivative defined by Eq. 2 is inaccurate, which af-
fects the edge probabilities. Instead we use backward and
forward differences of the second derivative. The edge
probabilities are then computed separately for the back-
ward and forward differences and combined.

We can localize edges to subpixel precision by adjusting
�x in Eq. 7 to integrate the probability over a region smaller
than a pixel. The region can be as small as desired and
positioned anywhere between two adjacent pixels.

3.5 The confidence probability
Edge probabilities alone can be misleading. For ex-

ample, the edge probability at a pixel can be low because
there is indeed no edge near the pixel, or because noise is
masking the true signal and it is difficult to determine if an
edge exists. We seek some measure of confidence that the
values of the second and third derivatives used to compute
the edge probabilities are not due to noise alone.

The test that we use is explained by Muirhead [14], and
we follow his discussion here. As we showed in Section
3.3, the distribution of X =

�
sxx sxxx

�t
is N (�;�),

where t denotes matrix transpose, and

� =

�
rxx
rxxx

�
; � =

�
�2xx 0
0 �2xxx

�
:

The p.d.f. of the quadratic form (X� �)t��1(X� �)
is chi-squared with two degrees of freedom, denoted �22.

To test the null hypothesisH0 : � = 0 against alternatives
� 6= 0, a test of size � is to reject H0 if

Q � X
t
�
�1
X > cm(�);

where cm(�) is the upper 100�% point of the �22 distri-
bution. When H0 is not true, Q has a non-central �22
distributionwith noncentrality parameter �, denoted �22(�),
where � = �t��1�. The power of this test is

�(�) = Pf�22(�) > cm(�)g:

To compute the confidence probability, we perform this
test at every pixel of the image. The size � is defined as the
probabilityof incorrectly deciding� 6= 0. As is standard in
such testing, we set � to be very low, since this is the error
we most want to avoid. Rather than making a hard decision
at every pixel based on whether Q > cm(�), we use as
our confidence probability �, the power of the test. The
power is defined as the probability of correctly deciding
that � 6= 0 when Q > cm(�).

4 The two-dimensional case
To extend our results on edge probabilities to the two-

dimensional case, we now look for zero crossings of the
second derivative of the signal in the direction of its gra-
dient. This requires that we know the distributions of the
first, second, and third directional derivatives of the noise,
and the distribution of the gradient direction. Computing
the probability of an edge in a given direction is similar to
the one-dimensional case, once we have the distributions
of the directional derivatives. But the gradient direction is
noisy as well. Therefore we use conditional probabilities
and integrate the product of the probability of an edge in a
given direction and the probability that that direction is the
gradient.

Let s(x; y), r(x; y), and n(x; y) be the true image, the
observed image and the noise respectively. As before,
we drop the positional parameters when it is clear that
we are referring to values at a single pixel. Let r denote
the vector of first, second and third derivatives of r with
respect to x and y. From this vector the gradient direction
and directional derivatives can be estimated. Let �g =
tan�1(sy=sx) be the gradient direction of the signal. The
probability of an edge given r can be written

Pfedge
>>>>rg =

Z 2�

0

Pfedge
>>>>� = �g ; rgPf� = �g

>>>>rg d�g:
(8)

The sections that follow provide the details of the right-
hand size of this equation. We will use the following ad-
ditional notation. Let g = (s2x + s2y)

1=2 be the gradient
magnitude of the signal, and let ĝ = (r2x + r2y)

1=2 and



�̂g = tan�1(ry=rx) be the gradient magnitude and direc-
tion of the observations. We denote the ith derivatives of r
in direction � by r�i , and similarly for s and n.

4.1 Image derivatives
Here we present the distributions of the first, second and

third derivatives of the noise in the x and y directions, and
the distribution of the gradient direction.

As in the one-dimensional case, the derivatives are
jointly Gaussian with zero means, and the covariance ma-
trix completely specifies their distribution. We again use
the discrete Lindeberg operators [10]. Using autocorrela-
tion functions and power spectral densities as before, we
find the covariance matrix. Since it is symmetric, we show
only its lower half:

K(n) = �2n

2
6666666666664

AB
0 AB
0 0 AD
0 0 0 BB
0 0 CC 0 AD
AF 0 0 0 0 AE
0 BC 0 0 0 0 BD
BC 0 0 0 0 CF 0 BD
0 AF 0 0 0 0 CF 0 AE

3
7777777777775

;

where
n =

�
nx ny nxx nxy nyy nxxx nxxy nxyy nyyy

�t
,

A = T2(0), C = 2T2(1) � 2T2(0) and B, D, E, and
F are as in Section 3.2.

To compute directional derivatives, we use separable
two-dimensional kernels based on derivatives of the Linde-
berg one-dimensional kernels. The directional derivative
kernels can be steered to any direction by taking an appro-
priate linear combination of basis kernels, the derivatives in
the x and y directions. For details on steering, see Freeman
and Adelson [7]. Using linearity, we can steer the results
of convolving the image with the basis kernels.

The distribution of the gradient direction has been de-
rived by Lyvers and Mitchell [12], Gregson [8], and Ramesh
and Haralick [17]. Given the observations rx and ry, sx
and sy have Gaussian distributions with means rx and ry
and standard deviation �1 = �x = �y. Because of the
structure of K(n), nx and ny are independent, and thus sx
given rx and sy given ry are as well.

The distributionfor �g given �̂g and ĝ is the offset normal
distribution [13],

f(�g
>>>>ĝ; �̂g) = �(z)p

2�
+(z cos �g)� (z sin �g) � (z cos �g) ;

(9)
where z = ĝ=�1, �g = �g � �̂g , �(z) is the p.d.f. of the
standard univariate normal distribution, and �(z) its c.d.f.
Note the distribution is over �g but parameterized by z.
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Figure 2: Pixel width as a function of direction.

4.2 The probability of an edge given �g

In the one-dimensional case, the probability of an edge
is given by Eq. 5. In the two-dimensional case, given
that the edge is in the gradient direction �g , we replace
the one-dimensional derivatives implicit in that equation
by directional derivatives steered to the �g direction. We
need also to account for the fact that the “width” of a two-
dimensional pixel varies with �g , as depicted in Fig. 2. We
now write the half-width of a pixel as

�x(�g) =
�x

max(j cos �g j; j sin�g j) : (10)

In one dimension, we computed the edge probability in
two parts depending on the sign of sx. In two dimensions,
because �g is the gradient direction, we need only consider
the sx > 0 case because Pfsx > 0g = 1. Modifying Eq. 7
accordingly, we obtain

Pfedge
>>>>r�g2 ; r�g3 ; �gg = (11)

G+

�
�3
�2

�x(�g)

�
�G+

�
��3
�2

�x(�g)

�
;

where �2 and �3 are the standard deviations of the second
and third noise derivatives in direction �g . In practice, they
depend on �g so little that we approximate them by �xx
and �xxx respectively. Here, r�g2 and r�g3 are part of the
definition of G+, just as rxx and rxxx were in Section 3.3.
4.3 The probability of an edge

Now we can fill in the details of the the two probabil-
ities in the integrand of the right-hand side of Eq. 8, the
probability of an edge given the observations. The first
probability, Pfedge

>>>>� = �g ; rg, is given by Eq. 11. The
second probability, Pf� = �g

>>>>rg, is the offset normal
distribution as given by Eq. 9.

We have not been able to evaluate the integral in Eq. 8
in closed form. Indeed, it follows from the discussion of
Eq. 3 in Section 3.3 that Eq. 11 itself involves integrals
that have no closed-form solution. We evaluate the integral
numerically using precomputed tables for the offset normal
distribution.

Integrating Eq. 11 over � corresponds to evaluating the
edge probability in the � direction and weighting that prob-
ability by the probability that � = �g , which we compute
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Figure 3: (a) The flower image; (b) detail; (c) edge probability map: dark values indicate high probabilities; (d) detail.

with the offset normal distribution. The observed gradient
magnitude ĝ influences the edge probabilities because the
offset normal distribution depends on ĝ through z = ĝ=�1
(see Eq. 9). When z is low, the offset normal approaches
the uniform distribution, although its maximum is still at
the observed gradient direction; when z is high, the offset
normal is very concentrated near the observed gradient di-
rection. Because �1 is constant withinan image, this lowers
edge probabilities when ĝ is small but not (or only slightly)
when it is large. The overall effect is to reduce background
noise. We have observed, however, that evaluating Eq. 11
in the observed gradient direction is a reasonable approxi-

mation to Eq. 8.
4.4 The confidence probability

The confidence probability in two dimensions is com-
puted the same way as in one dimension, except now there
are seven degrees of freedom in the chi-squared distribu-
tion: the second derivative has three components and the
third derivative four. The covariance matrix of these deriva-
tives is a submatrix of K(n) in Section 4.1.
4.5 Examples

We have tested the computation of probability maps on
a variety of synthetic and natural images. Fig. 3(a) shows
an image of a flower in front of a building, and Fig. 3(c)
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Figure 4: (a) Detail of window in flower image; (b) in
flower probability map; (c) edge detection.

its probability map, using � = 1. Fig. 3(b) magnifies a
small region of the image, and Fig. 3(d) the corresponding
region of the edge probability map. Note that even though
the two edges of the stem on the right side of Fig. 3(b) are
only separated by one pixel and have low contrast in the
original image, the high-probability edges in the probability
map are clearly visible. This is a consequence of both
the accuracy of the Lindeberg operators and the ability of
the zero-crossing probabilities to localize edges. Also in
Fig. 3(d), the vertical edges of the brick on the left side of
the map are blurred because the scale of smoothing is too
fine to localize these edges, which have a relatively large
blur scale, and therefore a low confidence probability.

5 Edge Detection
Fig. 4 illustrates the computation of edges from the edge

probability map. Fig. 4(a) shows a detail on the building’s
window from the image in Fig. 3. Fig. 4(b) shows the
edge probability map. The edges are nearly horizontal,
transitioning from one scan line to the next every few pixels.
Note that the probabilities in the transitional areas are lower
than when the edge runs along a scan line. This is because
an edge in a transitional region is close to the boundary
between two pixels, and its probability is split between
them. It is interesting to note that this results in a natural
anti-aliasing in the computer graphics sense.

Detecting edges by thresholding the edge probabili-
ties directly will leave gaps where an edge passes near
the boundary between two pixels. The following scheme
avoids this problem. When an edge passes between two
pixels, the pixels will lie approximately along the line in
the gradient direction at the pixels. We visit every pixel
and check that its probability is greater than those of its
neighbors one pixel away in the gradient direction (and its
opposite). If so, we sum that pixel’s probability with the
larger of its two neighbors. We can do this because we
defined �x in Eq. 10 carefully to cover exactly one pixel.
When an edge passes through the center of the pixel, the
contribution of its larger neighbor will usuallybe negligible.
When an edge passes between two pixels, the contribution
of its larger neighbor will be significant. Fig. 4(c) shows
the result of using this procedure on the probability map in

Fig. 4(b).

6 Scale Selection
Once we have computed the edge and confidence proba-

bilities at different scales, we select the appropriate scale for
each pixel by using Elder’s observation that the best scale
is the minimum reliable scale [5]. We choose the minimum
reliable scale by thresholding the pixel’s confidence prob-
ability at some high value and choosing the minimal scale
that exceeds that threshold. Once the minimum reliable
scale is found, the edge probability of that pixel is copied
to an image that stores the final result.

An example for the scale selection can be seen in Fig. 5,
which shows an image of a mannequin and its shadow,
and edge and confidence probability maps at three scales.
Elder used this image to illustrate his approach to scale
selection [5]. The image contains edges at a variety of
scales, from sharp edges on the mannequin itself to edges
that are increasingly diffuse along the shadow from its feet
to head.

Fig. 5(c) shows edge and confidence probability maps
computed with three different scales of smoothing, using
�n = 2. In the finer-scale edge probability maps, the details
of the mannequin itself are captured precisely, but as the
edges become more diffuse on the shadow, the probabilities
become lower, reaching background levels on the shadow’s
thighs. As scale increases, the diffuse edges now have
higher probabilities, but the sharp ones are smeared out, and
some details are lost entirely. The confidence maps were
computed with size � at the 5� level (where the � here is
the standard deviation of the normal distribution). Fig. 5(b)
is the result of applying the edge detection algorithm from
the previous section to the edge probability map after scale
selection, i.e., a map that combines the results from scales
1; 2; and 4. We used a threshold of 0.9 on the resulting
probability map to get the edges.

7 Conclusions and future work
In this paper, we have analyzed the behavior of zero

crossings of the second derivative from a statistical point of
view. We have shown how to compute the probability that
an edge passes through a pixel, and a probability that the
measurements underlying the edge probability are reliable.
We used the Lindeberg operators for their accuracy and
scale-space properties, and analyzed their statistical prop-
erties. We argued that testing for edges with the gradient
magnitude was prone to errors, and showed that the proper
role for the gradient magnitude is through the offset nor-
mal distribution, which in our approach assigns different
weights to the probability of an edge in different directions.
Our results on natural images demonstrate the promise of
this approach.



(a)
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Figure 5: (a) The shadow image; (b) detected edges after scale selection; (c) edge (left) and confidence (right) probability
maps for scales � = 1; 2; 4.

We are currently working on computing edge proba-
bilities to subpixel accuracy, applying our techniques to
detecting other features like ridges and junctions, and us-
ing the probabilistic information we compute in linkingand
grouping edges and segmenting curves.
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